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Abstract: Since the 2010s, various national and pan-European public infrastructures have been 

emerging around aggregation, viewing, and 3D heritage model collection. The purpose of this arti-

cle is to focus on the current state and ecosystem for 3D models in Europe through (a) a review of 

published studies on users, objects, and demands (b) and an overview of the ecosystem for 3D her-

itage data. As part of the German distributed infrastructure, the DFG 3D Viewer Jena experimental 

repository serves as a testbed for technology prototyping and testing. Based on the findings of the 

European ecosystem, we used this repository to test a prototypic approach to (c) acquiring 3D data 

from multiple sources, (d) enriching data quality, and (e) enabling indexing, searching, and viewing 

functionalities. 
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1. Introduction 

Since the 1980s, digital 3D models of cultural heritage have been used in a variety of 

disciplines such as archaeology, architecture and art history, and museology as a tool for 

research and knowledge transfer. Such models are created primarily through either the 

retro-digitization of objects that still exist or the interpretative reconstruction of historical 

objects that no longer exist, based on multiple sources [1]. Although the working methods, 

data structures, and results of both approaches differ fundamentally [2], there are over-

arching requirements with regard to visualizing the 3D data contained and ensuring ac-

cess to metadata and paradata sets. 

Within the European Union (EU), there has been a long-standing interest in 3D her-

itage. Related funding programs previously focused on technological aspects such as cost 

efficiency, user-friendly tools for creating digital 3D models [3] and their prototypic ap-

plication, as well as the setup of infrastructures [4]. Overviews of projects and infrastruc-

tures in cultural heritage are provided by [5–7]. With regards to research infrastructures 

and their target groups, CLARIAH provides virtual research environments, especially for 

text-related research. ARIADNE and CARARE are dedicated to supporting archaeologi-

cal information management [8,9]. The Europeana virtual library [10] is a repository for 

digital cultural heritage assets and collecting and aggregating institutions such as muse-

ums, libraries, and archives [11]. Complementing this, the E-RIHS infrastructure initiative 

focuses on tools and services for heritage sciences [12] (an extended overview is provided 

in [2]). 

Recently, 3D modeling of cultural heritage gained significant a�ention after the dig-

ital transformation of the cultural heritage sector after the COVID-19 pandemic [13] as 

well as the strengthening of the digital market through the Digital Europe Data Space 

[14,15]. This is all linked to a shift toward large-scale digitization and modeling of 3D 

content. Consequently, the European Commission proposed a campaign in late 2021 to 
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digitize all monuments and sites at risk as well as 50 percent of the most visited monu-

ments, buildings, and sites in 3D by 2030 [16]. This would target 2.4 million 3D assets by 

2025 and 16 million assets by 2030. Currently, in 2023, most accessible models are still 

stored in private sector repositories, such as Sketchfab, while public repositories contain 

comparatively few 3D model data to date (see Table 1). 

Table 1. The number of 3D models stored in repositories (examples). 

Repository Number of 3D Models Contained 

Sketchfab (objects tagged “cultural heritage”) 100,000+ (10/2019) [17] 

Europeana 5931 (5/2023) [18] 

Kompakkt 261 (4/2023) [19] 

DFG 3D Viewer 3922 (4/2023) [20] 

The purpose of this article is twofold. One aim is to analyze the current state and 

ecosystem for 3D models, particularly in Europe. This comprises (a) a review of the pub-

lished studies on users, objects, and demands (b) an overview of an ecosystem for 3D 

heritage data. Both studies were conducted to derive implications for the design of the 

national infrastructure for the DFG 3D Viewer. As part of this distributed infrastructure 

project, the DFG 3D Viewer Jena experimental repository serves as a testbed for technol-

ogy prototyping and testing. To overcome some of the challenges examined through the 

studies, we tested some prototypic approaches to (c) acquire 3D data from multiple 

sources, (d) enrich data quality, and (e) enable indexing, search, and viewing functionali-

ties. 

2. The Current State of 3D Repositories Quantified 

Various studies have been conducted to date on 3D heritage data (see Table 2). The 

literature-based reviews and surveys by FSU Jena [21,22], by the Virtual Multimodal Mu-

seum CSA [22], and the VIGIE study on the 3D digitization of tangible heritage exam-

inedusage scenarios and defined quality criteria [23]. Specific studies on 3D infrastruc-

tures include the Dutch Pure3D (2021: 48 valid responses) [24], the Europeana 3D (2019: 

38 individuals) [25], the EU INCEPTION project survey [26], and the survey by the US 

CS3DP group [27] (2018: 53 respondents). Most recently, the UK 3D Data Service Survey 

[28] was conducted in 2022. 

Table 2. Surveys related to 3D heritage modeling. 

Year Study Scope Participant No. 

2013 Conference article review (2000–2013) [22] Worldwide 478 published articles 

2016 FSU Jena author survey [21] Worldwide 988 participants 

2017 ViMM survey [22] Worldwide 782 responses 

2016 INCEPTION survey [26] EU 53 representatives 

2018 CS3DP [27] US 53 respondents 

2019 Europeana 3D Survey [25] EU 38 individuals 

2020 VIGIE Study [23] Worldwide 420 respondents 

2021 Pure3D [29] NL 48 responses 

2022 UK 3D Data Service Survey [28] UK Unknown 

In addition, several surveys on available platforms, repositories, and frameworks 

were compiled recently [30–34] to provide an overview of particular technologies such as 

laser scanning [35], photogrammetry [36], machine learning [37], and extended reality 

technologies [38]. Moreover, several studies analyze data and digitization within specific 

domains with occasional links to 3D data. These include the ARIADNE+ user survey [39] 
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for archaeology, the ICOM surveys [40–42], and the survey by Samaroudi et al. [43] ana-

lyzing museums during the COVID-19 pandemic. 

Community and 3D objects. The large-scale surveys by FSU Jena [21], ViMM [22], 

and EU VIGIE [23] provided a comprehensive analysis of a community, as well as objects 

and technologies for 3D modeling. Most humanities and cultural science actors come spe-

cifically from archaeology, art history, architectural history, and historical sciences (see 

Figure 1). Additionally, there is the involvement of actors from academia, heritage insti-

tutions, and commercial companies. 

 
 

(a) (b) 

  
(c) (d) 

Figure 1. Users of 3D heritage data. (a) Participating disciplines, FSU Author survey (Figure [22]). 

(b) Project—disciplines, PURE 3D Survey 2020 (Figure: [29]). (c) Disciplines of respondents, VIGIE 

Survey 2021 (Figure: [23]). (d) Disciplines of article authors and co-authors, Conf. article review 

(Figure: [44]). 

Objects are primarily monuments or architectural objects, followed by sculptural art 

objects (Figure 2). 
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(a) (b) 

Figure 2. The 3D digital heritage objects. (a) Digital heritage objects in articles (2000–2013), conf. 

article review (Figure: [45]). (b) Types of objects, VIGIE Survey 2021 (Figure: [23]). 

With regard to modeling technologies in current surveys, specifically photogramme-

try or scans of existing objects are used (see Figure 3). Hand-modeled 3D reconstructions 

are rarely explicitly mentioned, but according to our previous studies [46], these account 

for approx. 20% of the models. 

 
 

(a) (b) 

  
(c) (d) 

Figure 3. Technologies and approaches used to create 3D heritage data. (a) Three-dimensional mod-

eling technologies, literature survey (2015, n = 208) (Figure: [2]). (b) Three-dimensional modeling 

technologies, Europeana Survey (Figure: [25]). (c) Three-dimensional acquisition technologies for 

immovable heritage, VIGIE survey 2021 (Figure: [23]). (d) Three-dimensional modeling technolo-

gies, PURE 3D Survey 2020 (Figure: [29]). 

Formats and requirements for 3D viewer repositories were collected through multi-

ple surveys on a national level and also by the Europeana survey on a pan-national level. 

In general, it can be observed that a wide variety of data formats are used, with OBJ being 
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particularly relevant, but also glTF and COLLADA (see Figure 4). Models are predomi-

nantly viewed on laptops, while tablets and smartphones are significant, albeit to a lesser 

extent [24]. 

 
 

(a) (b) 

Figure 4. The 3D file formats. (a) Unweighted list of data formats, Europeana Survey [25]. (b) Data 

formats named as relevant, PURE 3D Survey 2020 (Figure: [29]). 

Specific requirements include measurement and editing tools, as well as the capabil-

ity to show/hide parts of the model [24] (see Figure 5). With regard to metadata, Dublin 

Core as a metadata reference and CIDOC CRM [47] as a top-level ontology for cultural 

heritage data are both widely used, with specific implementations for domains and pur-

poses. Despite a large plurality of formats, requirements, and formalized processes 

[44,48], a significant challenge that remains in working with 3D data is insufficient or miss-

ing documentation of both metadata as object descriptions and paradata describing the 

creational process. 

 
(a) 
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(b) 

Figure 5. Requirements for 3D data infrastructures. (a) Required features, UK 3D Data Service Sur-

vey (Figure: [28]). (b) Required features, PURE 3D Survey 2020 (Figure: [29]). 

3. A 3D Data Ecosystem in Germany and across Europe 

Beyond the meta-analysis of studies on 3D infrastructures, a second part of this article 

is dedicated to mapping an ecosystem for 3D for cultural heritage at the European and 

national levels, the la�er with a specific focus on a German ecosystem. The research used 

a qualitative methodology adopted from policy analysis including categorizing policy 

documents, defining fields of activity, and comparing different spatial references (c.f. 

[49]). Several studies analyzed EU projects on digitization for cultural heritage (recently 

[4,50,51]). In addition, the Heritage Research Hub [52] maintains an overview of previous 

and current projects in the field. Other studies have examined specific facets, such as EU-

level policies [53] or the state of digitization in European cultural heritage institutions [54]. 

A recent analysis of national cultural heritage hubs was conducted by the 4CH project, 

which mapped 51 national and sectoral hubs [55]. 

With regard to funding, previous programs have primarily focused on technological 

developments. However, there has been a paradigm shift in funding politics and policies 

since 2010. Since then, in addition to the still extant priorities on the forming of technical 

infrastructures as digital research environments or repositories, other topics became in-

creasingly important objects of funding—examples are human resource development, 

transnational knowledge exchange and cooperation, the enhancement of social and eco-

nomic impacts, and valorization and dissemination of digital 3D objects [56]. An evalua-

tion of the EU research funding programs until 2014 stated that the aim to “foster the 

dissemination, transfer and take-up of program results” was only limited and covered by 

these programs [3]. In response to that, the Horizon Europe program aims for “an under-

standing of Europe’s intellectual basis” and the usage of “new technologies […] as they 

enable new and richer interpretations of our common European culture while contrib-

uting to sustainable economic growth” [57] (p. 5). The program also aims to strengthen 

the development of infrastructures to foster the research, education, and publication of 

“knowledge-based resources such as collections [or] archives” [58] (p. 4), see also [59,60]. 

Therefore, it is crucial to closely interlink a viewer infrastructure for 3D models with 

corresponding teaching, community, standardization, and innovation measures (see 

Table 3). Three-dimensional data infrastructures are also developing in a highly dynamic 

environment, especially in Europe, where numerous national, domain-specific, and 

international initiatives compete with each other. 
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Table 3. Overview of an ecosystem on 3D data, 2023. 

 International (e.g., EU Level) Multinational Germany 

Standards for 

3D content de-

scription 

There are various standardization initiatives around 3D herit-

age data. CIDOC CRM is a generic metadata scheme for herit-

age objects, with relevant work by ARIADNE+ [61] and 4CH 

[62] to adopt and extend for digital 3D heritage documenta-

tion. Concerning open metadata standards CARARE, 3D 

ICONS, the Europeana 3D content task force and the ICOM 

Group have conducted significant work. The IIIF 3D commu-

nity group [63] coordinates and facilitates open standards for 

viewing and 3D annotations. Quality measures for 3D content 

were proposed; for example, by the VIGIE Study [23]. Re-

garding 3D data formats, the Khronos Group [64] or Web3D, 

[65], for example, define overarching formats. See [24] for a 

recent overview. 

Various groups, such as the Eu-

ropeana 3D Task Force [25] and 

the AG Digitale Rekonstruktion 

des DHd e.V. [66], examine and 

monitor the current state of 

standards. 

The DFG IDOVIR project [67] devel-

ops a VRE for paradata recording. A 

metadata scheme alignment initiative 

of major German infrastructures has 

been started in 2022 to enable the 

mapping of their schemes. 

Data Infra-

structures 

The Digital Europe Data Space [15] for Cultural Heritage, 

maintained by Europeana, provides data repositories and ag-

gregation; for instance, for heritage data. The European Cloud 

for Cultural Heritage (ECCCH) [68] will develop a toolset for 

cultural institutions. The European Open Science Cloud 

(EOSC) [69] provides a set of core services to store and share 

research data. Various VREs deal with 3D data; for example, 

E-RIHS [70] for heritage science and ARIADNE+ for archaeo-

logical data. 

Several national 3D infrastruc-

ture consortia are already 

formed; for example, in Swe-

den, [71] UK [72], Ireland [73] 

or France [74], or the Nether-

lands [75]. 

The NFDI4Culture [76] provides var-

ious tools, such as the FOSS infra-

structure [77], for annotating 3D 

models with Wikidata entries. Bau-

reka.online [78] provides a portal to 

store and share research data, partic-

ularly for historical architectural re-

search. The FID BAUdigital [79] pro-

vides information services for Civil 

Engineering, Architecture, and Ur-

banism. The DFG 3D Viewer is a 

multi-source repository. 

Education 

The KIC CCIS AP 1 and 2 are dedicated to aligning curricula 

for graduate and postgraduate education in Europe. 

DARIAH Teach [80] and the TMO Academies [81] provide 

OER material for learning 3D-related skills. 

The Computer-based Visualiza-

tion of Architectural Cultural 

Heritage (CoVHer) [82] ERAS-

MUS+ project strives to define 

applicative/practical guidelines 

and operational methodologies 

for 3D models of artefacts that 

no longer exist or have never 

been built. 

The Virtuelle Akademie zur digitalen 

3D-Rekonstruktion [83] and the Digi-

tal4Humanities project [84] has de-

veloped collections of video tutorials 

to improve 3D skills. 

The DFG network for architectural 

3D reconstruction has developed a 

handbook for scholars [44]. 

Community 

Time Machine [85], the Europeana Network Association [18], 

and the ICOMOS/ISPRS CIPA [86] are domain-independent 

large networks of heritage professionals. Networks such as 

CAA [87] for archaeology or ICARUS [88] for archival studies 

are domain-specific platforms. The 4CH Competence Centre 

[89] is developing a concept for a Europe-wide support struc-

ture for 3D data [90]. 

The EU Interregional Partner-

ship for Virtual and Smart Cul-

tural Tourism [91] is a multi-re-

gional community and project 

hub around digital heritage. 

The DHd e.V. [92] is the national as-

sociation for Digital Humanities in 

German-speaking countries. 

 

Viewer 

Sketchfab [93] is the world’s largest 3D data repository and 

provides an integrated and embeddable viewer. Google’s 

ScanTheWorld initiative [94] offers 16,000 objects in its object 

collection. 

Various viewers such as the Smithsonian3D, 3DHOP, ATON [95], 

Ark/k [96], Clara.io, CFIR.science, MorphoSource [97], Stanford 3D, 

Exhibit, Virtual Interiors, DarkLab, GB3D, CyArk [98], NASA 3D 

[99], Kompakkt, and Potree (overviews: [23,24,100]) are available and 

used in multiple projects, primarily at the national level, e.g., [101]. 

Open Innova-

tion 

Gaia-X [102] provides a digital service platform with digital 

heritage as one of the use cases. 

The EIT Culture & Creativity [103] is proposed to provide a 

large-scale framework for cultural innovation. 

The C4Education Innovation Lab [104] is developing a B2B 

application platform at the European level. 

Various applications utilize 3D heritage data. Overviews: the Virtual 

Multimodal Museum CSA mapped museum applications until 2017 

[105] on augmented reality applications [106] and heritage sites [107]. 

4. Implications for the Design of 3D Data Infrastructures 

A multitude of implications has been already collected and compiled for the design 

of 3D data infrastructures [68]. One main differentiation lies in the purpose of 3D data 

infrastructure, such as data repositories to store and preserve data, viewer infrastructures 

for publishing and viewing content, and feature-rich virtual research environments 
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(VREs) that provide tool collections and working environments with many infrastructures 

serving multiple roles. The investigations identified several current challenges, including: 

 Public repositories contain comparatively few 3D model data to date: Although 

numerous infrastructures for 3D models on a national level are currently in for-

mation, the expansion of the publicly hosted model pool still represents a significant 

challenge. Another issue for preservation is finding repositories capable of accepting 

the exceptionally large datasets resulting from very high-quality digitization of large 

objects. Many models are still not publicly accessible due to being stored in local data 

repositories [2]. Although Sketchfab is not a preservation repository but a private 

viewer platform, it still contains the majority of publicly accessible models. Due to 

the characteristics of platform businesses toward winner-take-all dynamics [108], 

there is a tendency for one platform to dominate the market. This could be addressed 

by concurring platforms reaching a significant size; for instance, by content aggrega-

tion or serving specific purposes, such as privacy and long-term preservation. There 

are also market gaps visible as opportunities to store (very) large high-quality 3D 

datasets are missing. A consequent implication is to serve a high-demanded profile, 

such as long-term preservation, and offer many models, which can be achieved by 

incorporating reusable and publicly available 3D content. 

 Enhancing findability and reusability: Findability and accessibility increasingly be-

come challenging as the number of 3D models increase, as evidenced by our previous 

analysis on image repositories [109]. Stable identification (ID) systems are a major 

prerequisite to citing and accessing model data. Indexing and findability of 3D data 

primarily rely on metadata. Despite extensive research [48] and numerous meth-

ods/tools [110–116], for example, reverse engineering tools to compare models with 

sources [117,118], documentation tools and methods to record steps and decisions 

taken during the 3D modeling process [114,119,120] metadata still need to be as-

signed by the creators in manual processes. With regards to the relevant schema, 

CIDOC CRM became fixed as an ISO standard for heritage documentation [47]. Nev-

ertheless, the widespread adoption of CIDOC CRM into systems remains of limited 

outreach, and its implementation into application ontologies is of heterogeneous 

quality. Regarding metadata creation, currently most metadata descriptions are set 

manually by users. Numerous initiatives are targeting the development of domain-

specific thesauruses to formalize the tagging by metadata; for example, art and archi-

tectural history content. Despite the unification by ontologies, manual tagging is lim-

ited; for instance, with regard to necessary workload, as well as a limited suitability 

for massive amounts of data or retro-tagging. Therefore, ensuring and/or automating 

the process of sufficient metadata generation and verification becomes an important 

issue. 

 Serving heterogeneous user communities: Three-dimensional heritage objects are 

used in various disciplinary contexts such as art and architectural history studies, 

museology, archaeology, and heritage conservation for a wide range of purposes in 

research, education, and heritage management [44]. Several sectoral standards such 

as IFC for building information modeling [121], GML for geo- and city-scale models 

[122], and the Digital Twin [123] as a domain overarching paradigm are relevant. In 

addition to content generated by professionals, there is a substantial amount of 3D 

heritage content created by enthusiasts. The creation of user-generated 3D content is 

facilitated by the development and availability of ready-to-use photogrammetric 

software tools [2] supporting the crowdsourced collecting and processing of images 

as a prerequisite for 3D photogrammetry [124] and the crowd-based creation of 3D 

models [125,126]. One of the key success factors of repositories is their ease of use 

[109]; for instance, due to their slick and user-friendly user interfaces and workflows. 

Consequently, repositories are required to address a large variety of users and incen-

tivize them to provide content by keeping requirements low, nurturing the content 

provision, and providing rewards. 
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 Feature and quality requirements: The visual qualities of 3D web-based viewers 

have been discussed in various articles [30], with a notable trend to increase (photo) 

realism. However, these required visual qualities seem highly dependent on use 

cases. Regarding tools and functionalities, many application frameworks provided 

by public institutions are VREs that provide a complex working environment for par-

ticular communities, such as archaeology [127] or architectural history [128], but re-

quire much more experience. For general-purpose 3D viewers, low-level require-

ments, such as model viewing and viewport navigation, are considered extremely 

important [28,45]. Higher-level requirements include measurement and editing tools 

and the ability to show/hide parts of the model [24]. Consequently, viewer tools 

should be kept simple and focused on the most relevant features. 

 Monitoring and fostering standards: Currently, many initiatives are emerging 

around 3D data, leading to the development of a multitude of viewer frameworks. 

To address the aforementioned challenges and anticipate changes in the future, a 

modular adaptability of technological frameworks is required, which might include 

upcoming viewer technologies, as well as the monitoring of these initiatives on the 

national and international levels. 

5. The DFG 3D Viewer Project 

The analysis presented in the previous sections guides the DFG 3D Viewer as a Ger-

man-based infrastructure development project. This initiative was started in 2014 by the 

German Working Group for 3D Reconstruction [110]. It led to the DFG 3D Viewer project, 

a collaboration between FSU Jena, HS Mainz, and SLUB Dresden, which has been under-

way since 2021. The project aims to expand the current media viewer infrastructure oper-

ated by the German Research Foundation and the German Digital Library to add the ca-

pability of processing 3D data. The project aims to provide permanent and sustainable 

access to 3D datasets and associated metadata and enable web-based model viewing. 

5.1. User Requirements 

With regard to specific use cases, a cross-disciplinary workshop held in 2014 involv-

ing 40 German researchers engaged in the digital reconstruction of cultural heritage, who 

examined the significant demand for zoomable and rotaTable 3D model viewing [110]. 

Within the German ecosystem, the following initiatives are operational: 

 Preservation of digital assets is primarily the responsibility of the state libraries, 

which formed a specific entity, and the German Digital Library as a nationwide data 

aggregator and service provider [129]. 

 Research tools and virtual research environments are being developed within a 

multitude of other initiatives. A notable example in Germany is the National Data 

Infrastructure with three initiatives (NFDI4Culture, NFDI4Memory, and NFDI4Ob-

jects) involving 3D data of cultural heritage [130]. 

 Making 3D models available for viewing online has been examined as a primary 

objective by the aforementioned surveys. In response, the German working group for 

3D reconstructions (AG Digitale Rekonstruktion des DHd e.V.)—a group of 80 indi-

viduals from 40 academic institutions in the German-speaking area [131]—

conceptualized and initiated the DFG 3D Viewer project as a national initiative to 

enable public open access. 

5.2. The System Architecture 

To be compatible with the multitude of extant and future infrastructures, the DFG 

3D Viewer is designed as a modular system that enables the integration of various repos-

itories, viewers, and services. This includes 3D data conversion, reconstruction, documen-

tation, and metadata enrichment, and also the ability to link to other 3D model infrastruc-

tures in Germany, such as the Kompakkt viewer [132] or Virtual Research Infrastructures, 
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such as FOSS [77] or the 4D Browser [133]. A range of services incorporated into the DFG 

3D Viewer include export options for the conversion and parsing of metadata in container 

formats (including METS/MODS format) and converters for 3D data formats (e.g., 

OBJ/MTL, FBX, IFC, PLY, and XYZ) into the glTF format. The glTF format was chosen 

since it is widely supported by WebGL-based viewers and has numerous relevant features 

for browser-based viewing, such as single-file containers or progressive loading [134]. Pre-

vious articles have provided explanations of the overall project [100], as well as specific 

components, such as the metadata scheme [135] and usage scenarios [116]. 

5.3. The Jena 3D Experimental Repository 

As of early 2023, the DFG 3D Viewer consortium has been operating two repositories. 

A semi-production system is operated by HS Mainz and is based on WissKI as a virtual 

research environment and linked open data management software [136]. This environ-

ment is used as a live system to store and deliver a unique model pool. As a second repos-

itory, we launched the Jena experimental repository for the DFG 3D Viewer in 2022 to test 

data aggregation, processing, and enrichment workflows in an experimental and fully 

controllable environment. It is based on a LAMP stack running in a dockerized VM. The 

processing pipeline includes various PHP and Python scripts. The overall processing 

scheme of the Jena experimental repository comprises components for “Data retrieval”, 

“Data processing”, “Metadata creation”, “Data enrichment”, and “Data visualization” 

(see Figure 6) and will be the subject of discussion in the next sections. 

 

Figure 6. Overall processing scheme of the Jena experimental repository for the DFG 3D Viewer. 

6. Data Retrieval 

6.1. Retrieval Pipeline 

To overcome the issue of limited content availability, we have implemented server-

based Python scripts to retrieve 3D models from Sketchfab, Europeana, the HS Mainz 3D 

Repository, and the UrbanHistory4D repository through API calls by name or location. 

To ensure legal compliance, we selected Creative Commons CC0 or CC-BY [137] licensed 

content only. 

The retrieval service operates as a series of server-side scripts wri�en in Python and 

PHP, feeding into a SQL database and a Unix file storage system. The scripts gain input 

from (1) the GeoNames “Major cities of the world” [138] dataset, (2) a keyword-based 

retrieval from Europeana, (3) JSON-based database retrieval for Mainz and UrbanHis-

tory4D, and (4) locations called by users in our mobile 4D city app, which are resolved 

into place names using GeoNames [139]. Scripts 1 and 2 are operated on a one-time basis, 

and 3 and 4 work as cron jobs. As of early 2023, a total of 3922 3D models have been re-

trieved from these sources (see Table 4). 
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Table 4. Number of retrieved models (3/2023). 

Source Number 

Sketchfab 2.736 

Europeana 906 

Mainz 3D 64 

UrbanHistory4D 214 

6.2. User-Generated Content: The 3D Reconstruction Service 

As an alternative method for gathering 3D content, we implemented a low-end 3D 

digitization pipeline for documenting heritage using images captured with a smartphone. 

The objective is to document cultural heritage by using images and 3D models from user-

generated photos and to integrate them into our repository. The 3D reconstruction service 

includes a webpage frontend providing a guided workflow capturing and uploading im-

ages to the portal servers, together with metadata (see Figure 7). 

 

Figure 7. A 3D reconstruction service workflow scheme. 

Metadata can be freely added or retrieved from sources such as Wikipedia for object 

descriptions, ORCID [140] for user information, and GeoNames for location information. 

Once uploaded, a server-side process is initialized, utilizing a scripted Meshroom [141] 

pipeline to create 3D models from these images. Currently, this tool is used with an unsu-

pervised pipeline, automatically uploading the models to Sketchfab and then retrieving 

them into the DFG 3D Viewer repository to reduce error sources or data conversion issues. 

As a fallback option in the event of automated reconstruction failure, a manual workflow 

is used, allowing for parameter modifications. 

7. Data Processing 

After the retrieval process, a series of scripts is used to rename files to ensure unique 

filenames and modify linked URLs, thereby modifying the glTF XML description files. 

8. Metadata Creation 

In the following step, METS [142] and Europeana EML XML files are created by mod-

ifying a template. The database-stored metadata is injected into the template, resulting in 

a new description file for each item. To access this data, a PHP-based script creates a JSON 

listfile. 
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9. Data Enrichment 

An important step to make models findable is the utilization of authority data [143]. 

This type of data plays a crucial role in the prevention of data silos and linking enclosed 

projects across different media [144]. Classifying 3D content information is a significant 

challenge. Currently, simple structures [145] and even complex objects, such as buildings 

and architecture [146,147], can be automatically segmented [148,149]. Inferences can also 

be made as to which parts of the image reference which parts of the 3D object geometry 

[150,151]. As the technological backbone for image segmentation, technologies for object 

recognition [152,153], and data classification [154–158] are playing increasingly important 

roles. 

9.1. Image-Based Content Retrieval 

One step in the DFG 3D Viewer project involves identifying the content of the 3D 

model. To accomplish this, we render the model into a series of images and employ a 

content-based image retrieval (CBIR) script. This Python script operates on the server side 

and uses the Google Cloud Vision API to retrieve corresponding imagery. This enables us 

to retrieve information, such as a related Wikipedia article. 

9.2. Automated Content Classification 

Standards enable subject-specific classification of subject ma�er and make an essen-

tial contribution to the unambiguous indexing of cultural heritage. A controlled vocabu-

lary is an organized arrangement of words and/or phrases, which is used to index and/or 

retrieve content. “It typically includes preferred and variant terms, and has a defined 

scope or describes a specific domain” [159] (p. 12). Similarly, a thesaurus combines fea-

tures of synonym ring lists and taxonomies. “A thesaurus is a semantic network of unique 

concepts, including relationships between synonyms, broader and narrower (par-

ent/child) contexts, and other related concepts. Thesauri may be monolingual or multilin-

gual” [159] (p. 24). Examples are the controlled Ge�y Vocabularies, such as the Art and 

Architecture Thesaurus (AAT), the Ge�y Thesaurus of Geographic Names (TGN), the Cul-

tural Objects Name Authority (CONA), and the Union List of Artist Names (ULAN), as 

well as Iconclass [160] for iconographic indexing. 

In our case, the classification process utilizes a Python server-side script that iterates 

through the rendered images. These images are classified using the Google Cloud Vision 

classifier with the three most probable categories per image retrieved. In a second step, 

related AAT concepts are retrieved for each of those categories. 

To assess the quality of automated classification, keywords for 70 randomly selected 

3D models were independently assigned manually. The classification rule was based on 

describing object facets of the model with reference to the preview image, with five key-

words per model. The classification was all carried out by one person. The manually as-

signed keywords were compared to the five best matches of the automated keyword as-

signment. Matches had to correspond on word-stem (e.g., machinery vs. machine) or top-

/sub-level (e.g., art vs. cartoon). As shown in Figure 8, co-occurrences most likely appear 

for one or two of the classifications (median = 1, mean = 1.25). 
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Figure 8. Co-occurrence of classifications (n = 70 randomly selected 3D models with five auto-

mated/five manual classifications each). 

In an overall assessment, automated classification retrieved a larger variety of classes 

and contained more outliers (e.g., “automotive tire” for a theatre light beamer). Con-

versely, manual classification retrieved more complex concepts, such as names (e.g., 

“Paris” as a city name) or methods (e.g., “scan” vs. “reconstruction”). 

10. Data Visualization 

Various standards for 2D user interfaces have been established [161–163]. As a para-

digm for interface design, we combined 2D maps (e.g., Google Maps [164] or Open-

StreetMap [165]), historical images (e.g., Historypin [166]), and a keyword-based search 

across all content fields (Figure 9). Interaction with these elements triggers content filter-

ing. The interface is wri�en in plain HTML with JavaScript codes for interactions. We used 

OpenLayers [167] by adding map-based interaction functionalities. 

 

Figure 9. Screenshot of the index page for the Jena experimental repository for the 3D viewer. 

The detail page of each model refers to a Drupal-based instance of the DFG Viewer 

hosted by SLUB Dresden. The 3D view shown in Figure 10 is steered by a URL parameter 

and can either refer to Model Viewer [168], or a three.js-based viewer with additional func-

tions, such as cross-sections and model counts. 
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Figure 10. Screenshot of the 3D viewer model view page. 

11. Next Steps 

The current repository setup enables a complete workflow for retrieving, processing, 

and viewing data, as well as making it available for aggregation services provided by Eu-

ropeana. Although these components have been proven to work even at some scale, they 

demand a quality assessment by, for instance, comparisons with manual classifications. 

Considering that the Google Vision service is general-purpose, the use of classifiers 

designed specifically for cultural heritage may be of interest, as several alternative ap-

proaches are available to serve for classification and CBIR tasks [169–171]. Benchmarking 

with other approaches is, therefore, another next step to take. 

Additionally, our group focuses on the automated generation of 3D heritage building 

models from historical imagery [172]. These approaches are coupled with the visualiza-

tion of 4D-scaled building models at the world scale. The next step is to link both location-

based visualizations and the 3D model repository to visualizing location-based 3D content 

in the world viewer and vice versa, enriching the model pool by automatically generated 

building models. 

12. Summary 

After campaigns to digitize and valorize 2D heritage data as images and texts, the 

digitization, data aggregation, and utilization of 3D heritage data at a large scale became 

a major focus in Europe in the 2020s. This comprises se�ing up national 3D data infra-

structures, a Europe-wide program to equip Europeana to become the main 3D data ag-

gregator, and an initiative to digitize 30 million heritage objects from the whole of Europe 

by 2030. However, in 2023, a significant majority of 3D models of cultural heritage are 

currently stored by commercial companies in the US, and a European 3D ecosystem is 

fragmented and still in formation. Consequently, current demands are the expansion of 

model pools to a�ract content providers and users, the improvement of usability and 

findability, and the capability to deal with future developments. 

Against this background, an idea we are testing in our Jena 3D repository as an ex-

perimental branch of the German DFG 3D Viewer is the large-scale retrieval, enrichment, 

and visualization of 3D data from multiple sources. By aggregating extant model collec-

tions and utilizing ready-to-use services, we were able to create a public cultural heritage 

3D model collection with several thousands of models and provide enriched metadata 

information via various CBIR tools. Based on this proof of concept, the next task is to as-

sess whether and how these workflows could help develop more stable and production-

oriented infrastructures and correspond to identified use cases of relevance, such as the 

reuse of 3D models. 
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